
DLLists and Arrays
Lecture 5 (Lists 3)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Summary of
SLLists So Far
Lecture 5, CS61B, Spring 2024

Summary of Last Time (From IntList to SLList)

Methods Non-Obvious Improvements

addFirst(int x) #1 Rebranding: IntList → IntNode

getFirst() #2 Bureaucracy: SLList

addLast(int x) #3 Access Control: public → private

size() #4 Nested Class: Bringing IntNode into SLList

#5 Caching: Saving size as an int.

#6 Generalizing: Adding a sentinel node to
allow representation of the empty list.addFirst() sentinel

getFirst()

item next

63 5 1510

3
size

size()
addLast()

Inserting at the back of an SLList is much slower than the front.

One Downside of SLLists

public void addFirst(int x) {
 sentinel.next = new IntNode(x, sentinel.next);
}

public void addLast(int x) {
 size += 1;

 IntNode p = sentinel;
 while (p.next != null) {
 p = p.next;
 }

 p.next = new IntNode(x, null);
}

Improvement #7: (???) Goal: Fast addLast

How could we modify our list data structure so that addLast is also fast?

addFirst() sentinel
getFirst()

item next

?? 3 509

3
size

size()
addLast()

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Why a Last Pointer
Isn’t Enough
Lecture 5, CS61B, Spring 2024

Is .last enough? http://yellkey.com/camera

Suppose we want to support add, get, and remove operations for both ends, will
having a last pointer result for fast operations on long lists?
A. Yes
B. No, add would be slow.
C. No, get would be slow.
D. No, remove would be slow.

addLast() sentinel
getLast()

item next

?? 3 9 50

3
size

size()
removeLast()

last

.last Is Not Enough

Suppose we want to support add, get, and remove operations, will having a last
pointer result for fast operations on long lists?
● No, remove would be slow.

RemoveLast requires setting 9’s next pointer to null, and point last at the 9 node.
● Have to search through list to find the 9 node (second to last).

sentinel

item next

?? 3 9

3
sizeaddLast()

getLast()

size()
removeLast()

last

50

i.e. slow because we have to find the “9” node.

.last Is Not Enough

Suppose we want to support add, get, and remove operations, will having a last
pointer result for fast operations on long lists?
● No, remove would be slow.

RemoveLast requires setting 9’s next pointer to null, and point last at the 9 node.
● Have to search through list to find the 9 node (second to last).

sentinel

item next

?? 3 9

3
sizeaddLast()

getLast()

size()
removeLast()

last

50

i.e. slow because we have to find the “9” node.

Improvement #7: .last and ??? Goal: Fast operations on last.

We added .last. What other changes might we make so that remove is also fast?

sentinel

item next

?? 3 9

3
sizeaddLast()

getLast()

size()
removeLast()

last

50

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Doubly Linked
Lists
Lecture 5, CS61B, Spring 2024

Improvement #7: .last and .prev

We added .last. What other changes might we make so that remove is also fast?
● Add backwards links from every node.
● This yields a “doubly linked list” or DLList, as opposed to our earlier “singly

linked list” or SLList.

sentinel

item next

?? 3

2
size last

 prev

addLast()
getLast()

size()
removeLast()

9
item next prev item next prev

Note: Arrows point at entire nodes, not fields!

Example: last holds the address of the last
node, not the item field of the sentinel node.

Doubly Linked Lists (Naive)

Reverse pointers allow all operations (add, get, remove) to be fast.
● We call such a list a “doubly linked list” or DLList.

sentinel

item next

?? 3

2
size last

 prev

addLast()
getLast()

size()
removeLast()

9

0
sentinel

??

size lastaddLast()
getLast()

size()
removeLast()

item next prev item next prev

Doubly Linked Lists (Naive)

Non-obvious fact: This approach has an annoying special case: last sometimes
points at the sentinel, and sometimes points at a ‘real’ node.

sentinel

item next

?? 3

2
size last

 prev

addLast()
getLast()

size()
removeLast()

9
item next prev item next prev

0
sentinel

??

size lastaddLast()
getLast()

size()
removeLast()

Doubly Linked Lists (Double Sentinel)

One solution: Have two sentinels.

sentFront

item next

?? 3

2
size sentBack

 prev

9 ??

0
sentFront

??

size sentBack

??

addLast()
getBack()

size()
removeLast()

addLast()
getBack()

size()
removeLast()

This is one reasonable approach for Project 1.

Doubly Linked Lists (Circular Sentinel)

Even better topology (IMO):

0
sentinel

??

size

sentinel

3

2
size

9??
 nextitem prev

addLast()
getLast()

size()
removeLast()

addLast()
getLast()

size()
removeLast()

This is my
preferred
approach for
Project 1.

Examples:
● sentinel.next.next is the

node with item=9.
● sentinel.next.next.next

points at the sentinel node.
● The arrow in magenta is

sentinel.next.next.next

Note: arrows are
pointing at entire
nodes, not specific
fields of nodes.

Improvement #8: Fancier Sentinel Node(s)

While fast, adding .last and .prev introduces lots of special cases.

To avoid these, either:
● Add an additional sentBack sentinel at the end of the list.
● Make your linked list circular (highly recommended for project 1), with a single

sentinel in the middle.

DLList Summary

Still many steps before we have an industrial strength data structure. Will discuss
over coming weeks.

Methods Non-Obvious Improvements

addFirst(int x) #1 Rebranding: IntList → IntNode

getFirst() #2 Bureaucracy: SLList

size() #3 Access Control: public → private

addLast(int x) #4 Nested Class: Bringing IntNode into SLList

removeLast() #5 Caching: Saving size as an int.

#6 Generalizing: Adding a sentinel node to allow representation of the
empty list.

#7 Looking back:.last and .prev allow fast removeLast

#8 Sentinel upgrade: Avoiding special cases with sentBack or circular list.

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Generic Lists
Lecture 5, CS61B, Spring 2024

Integer Only Lists

One issue with our list classes: They only support integers.

SLListLauncher.java:6: error:
incompatible types: String cannot
be converted to int

SLList s2 = new SLList("hi");

Works fine!

public class SLList {
 private IntNode sentinel;
 private int size;

 public class IntNode {
 public int item;
 public IntNode next;
 ...
 }
 ...
}

SLList s1 = new SLList(5);
s1.addFirst(10);

SLList s2 = new SLList("hi");
s2.addFirst("apple");

Coding Demo: Generic Lists

public class SLList {
 private IntNode sentinel;
 private int size;

 private class IntNode {
 public int item;
 public IntNode next;

 public IntNode(int i, IntNode n) {
 item = i;
 next = n;
 }
 }

}

SLList.java

In this demo, we'll
modify our SLList to
support lists of any
data type, not just
lists of integers.

Coding Demo: Generic Lists

public class SLList<LochNess> {
 private IntNode sentinel;
 private int size;

 private class IntNode {
 public int item;
 public IntNode next;

 public IntNode(int i, IntNode n) {
 item = i;
 next = n;
 }
 }

}

SLList.java

A placeholder
name, which will
get replaced by
the true data type
each time a new
SLList is created.

Coding Demo: Generic Lists

public class SLList<LochNess> {
 private IntNode sentinel;
 private int size;

 private class IntNode {
 public LochNess item;
 public IntNode next;

 public IntNode(LochNess i, IntNode n) {
 item = i;
 next = n;
 }
 }

}

SLList.java

Items are no
longer integers,
but the LochNess
placeholder data
type.

Coding Demo: Generic Lists

public class SLList<LochNess> {
 private StuffNode sentinel;
 private int size;

 private class StuffNode {
 public LochNess item;
 public StuffNode next;

 public StuffNode(LochNess i, StuffNode n) {
 item = i;
 next = n;
 }
 }

}

SLList.java

Renaming IntNode
to StuffNode to be
more descriptive.

Coding Demo: Generic Lists

public class SLList<LochNess> {
 private StuffNode sentinel;
 private int size;

 public SLList(LochNess x) {
 sentinel = new StuffNode(null, null);
 sentinel.next = new StuffNode(x, null);
 size = 1;
 }

 public SLList() {
 sentinel = new StuffNode(null, null);
 size = 0;
 }

}

SLList.java

Replaced int x with
LochNess x, the
placeholder data
type.

Coding Demo: Generic Lists

public class SLList<LochNess> {
 private StuffNode sentinel;
 private int size;

 public void addFirst(LochNess x) {
 sentinel.next = new StuffNode(x, sentinel.next);
 size += 1;
 }

 public LochNess getFirst() {
 return sentinel.next.item;
 }

}

SLList.java

Replaced int x with
LochNess x, the
placeholder data
type.

Return type is
LochNess, not int.

Coding Demo: Generic Lists

public class SLList<LochNess> {
 private StuffNode sentinel;
 private int size;

 public void addLast(LochNess x) {
 size += 1;
 StuffNode p = sentinel;

 /** Move p until it reaches the end of the list. */
 while (p.next != null) {
 p = p.next;
 }
 p.next = new StuffNode(x, null);
 }

}

SLList.java

Replaced int x with
LochNess x, the
placeholder data
type.

SLists

Java allows us to defer type selection until declaration.

public class SLList<BleepBlorp> {
 private IntNode sentinel;
 private int size;

 public class IntNode {
 public BleepBlorp item;
 public IntNode next;
 ...
 }

 ...
}

SLList<Integer> s1 = new SLList<>(5);
s1.addFirst(10);

SLList<String> s2 = new SLList<>("hi");
s2.addFirst("apple");

Generics

We’ll spend a lot more time with generics later, but here are the rules of thumb
you’ll need for project 1:
● In the .java file implementing your data structure, specify your “generic type”

only once at the very top of the file.
● In .java files that use your data structure, specify desired type once:

○ Write out desired type during declaration.
○ Use the empty diamond operator <> during instantiation.

● When declaring or instantiating your data structure, use the reference type.
○ int: Integer
○ double: Double
○ char: Character
○ boolean: Boolean
○ long: Long
○ etc.

DLList<Double> s1 = new DLList<>(5.3);

double x = 9.3 + 15.2;
s1.addFirst(x);

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Array Overview
Lecture 5, CS61B, Spring 2024

Our Long Term Goal (next two lectures): The AList

In the last few lectures, we’ve seen how we can harness a recursive class
definition to build an expandable list, ie. the IntList, the SLList, and the DLList.

In the next two, we’ll see how we can harness arrays to build such a list.

Getting Memory Boxes

To store information, we need memory boxes, which we can get in Java by
declaring variables or instantiating objects. Examples:
● int x;
● Walrus w1;

● Walrus w2 = new Walrus(30, 5.6);

Arrays are a special kind of object which consists of a numbered sequence of
memory boxes.
● To get ith item of array A, use A[i].
● Unlike class instances which have have named memory boxes.

Gives us a memory box of 32 bits that stores ints.

Gives us a memory box of 64 bits that stores Walrus references.

Gives us a memory box of 64 bits that stores Walrus references,
and also gives us 96 bits for storing the int size (32 bits) and
double tuskSize (64 bits) of our Walrus.

Arrays

Arrays consist of:
● A fixed integer length (cannot change!)
● A sequence of N memory boxes where N=length, such that:

○ All of the boxes hold the same type of value (and have same # of bits).
○ The boxes are numbered 0 through length-1.

Like instances of classes:
● You get one reference when its created.
● If you reassign all variables containing that reference, you can never get the

array back.

Unlike classes, arrays do not have methods.

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Basic Array Syntax
Lecture 5, CS61B, Spring 2024

Like classes, arrays are (almost always) instantiated with new.

Three valid notations:

All three notations create an array, which we saw on the last slide comprises:
● A length field.
● A sequence of N boxes, where N = length.

x = new int[3];
y = new int[]{1, 2, 3, 4, 5};
int[] z = {9, 10, 11, 12, 13};

Arrays

Can omit the new if you are also
declaring a variable.

Creates array containing 3 int boxes (32 x 3 = 96 bits total).
Each container gets a default value.

As an aside: In Oracle’s implementation of Java, all Java objects also
have some overhead. Total size of an array=192 + KN bits, where K is
the number of bits per item (Sedgewick/Wayne pg. 201 for more)

int[] z = null;
int[] x, y;

x = new int[]{1, 2, 3, 4, 5};
y = x;
x = new int[]{-1, 2, 5, 4, 99};
y = new int[3];
z = new int[0];
int xL = x.length;

String[] s = new String[6];
s[4] = "ketchup";
s[x[3] - x[1]] = "muffins";

int[] b = {9, 10, 11};
System.arraycopy(b, 0, x, 3, 2);

Array Basics: http://goo.gl/tFyMEJ

http://goo.gl/tFyMEJ

Array Basics: https://goo.gl/gzAuBa

int[] z = null;
int[] x, y;

x = new int[]{1, 2, 3, 4, 5};
y = x;
x = new int[]{-1, 2, 5, 4, 99};
y = new int[3];
z = new int[0];
int xL = x.length;

String[] s = new String[6];
s[4] = "ketchup";
s[x[3] - x[1]] = "muffins";

int[] b = {9, 10, 11};
System.arraycopy(b, 0, x, 3, 2);

https://goo.gl/gzAuBa

Arraycopy

Two ways to copy arrays:
● Item by item using a loop.
● Using arraycopy. Takes 5 parameters:

○ Source array
○ Start position in source
○ Target array
○ Start position in target
○ Number to copy

arraycopy is (likely to be) faster, particularly for large arrays. More compact code.
● Code is (arguably) harder to read.

System.arraycopy(b, 0, x, 3, 2);

(In Python): x[3:5] = b[0:2]

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

2D Arrays
Lecture 5, CS61B, Spring 2024

int[][] pascalsTriangle;
pascalsTriangle = new int[4][];
int[] rowZero = pascalsTriangle[0];

pascalsTriangle[0] = new int[]{1};
pascalsTriangle[1] = new int[]{1, 1};
pascalsTriangle[2] = new int[]{1, 2, 1};
pascalsTriangle[3] = new int[]{1, 3, 3, 1};
int[] rowTwo = pascalsTriangle[2];
rowTwo[1] = -5;

int[][] matrix;
matrix = new int[4][];
matrix = new int[4][4];

int[][] pascalAgain = new int[][]{{1}, {1, 1},
 {1, 2, 1}, {1, 3, 3, 1}};

Arrays of Array Addresses (http://goo.gl/VS4cOK)

● Syntax for arrays of arrays can be a bit confounding. You’ll
learn through practice (much later).

http://goo.gl/VS4cOK

int[][] pascalsTriangle;
pascalsTriangle = new int[4][];
int[] rowZero = pascalsTriangle[0];

pascalsTriangle[0] = new int[]{1};
pascalsTriangle[1] = new int[]{1, 1};
pascalsTriangle[2] = new int[]{1, 2, 1};
pascalsTriangle[3] = new int[]{1, 3, 3, 1};
int[] rowTwo = pascalsTriangle[2];
rowTwo[1] = -5;

int[][] matrix;
matrix = new int[4][];
matrix = new int[4][4];

int[][] pascalAgain = new int[][]{{1}, {1, 1},
 {1, 2, 1}, {1, 3, 3, 1}};

Array Boxes Can Contain References to Arrays!

● Syntax for arrays of arrays can be a bit confounding. You’ll
learn through practice (much later).

Array of int array references.
Create four boxes, each
can store an int array
reference

Create a new array with three
boxes, storing integers 1, 2, 1,
respectively. Store a reference
to this array in pascalsTriangle
box #2.

Creates 5 total arrays.
Creates 1 total array.

What Does This Code Do? (Bonus Slides Only Exercise)

What will be the value of x[0][0] and w[0][0] when the code shown completes?
A. x: 1, w: 1
B. x: 1, w: -1
C. x: -1, w: 1
D. x: -1, w: -1
E. Other

arraycopy parameters are:
1. Source array
2. Start position in source
3. Target array
4. Start position in target
5. Number to copy

Answer: https://goo.gl/CqrZ7Y

int[][] x = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

int[][] z = new int[3][];
z[0] = x[0];
z[0][0] = -z[0][0];

int[][] w = new int[3][3];
System.arraycopy(x[0], 0, w[0], 0, 3);
w[0][0] = -w[0][0];

https://goo.gl/CqrZ7Y

SLLists:
• Summary of SLLists So Far
• Why a Last Pointer Isn’t Enough
• Doubly Linked Lists
• Generic Lists

Arrays:
• Array Overview
• Basic Array Syntax
• 2D Arrays
• Arrays vs. Classes

Arrays vs. Classes
Lecture 5, CS61B, Spring 2024

Arrays and Classes can both be used to organize a bunch of memory boxes.
● Array boxes are accessed using [] notation.
● Class boxes are accessed using dot notation.
● Array boxes must all be of the same type.
● Class boxes may be of different types.
● Both have a fixed number of boxes.

public class Planet {
 public double mass;
 public String name;
 ...
}

int[] x = new int[]{100, 101, 102, 103};
Planet p = new Planet(6e24, "earth");

Arrays vs. Classes

jug ~/Dropbox/61b/lec/lists3
$ javac ArrayDemo.java
$ java ArrayDemo
What index do you want? 2
102

Arrays vs. Classes

Array indices can be computed at runtime.

int[] x = new int[]{100, 101, 102, 103};
int indexOfInterest = askUser();
int k = x[indexOfInterest];
System.out.println(k);

jug ~/Dropbox/61b/lec/lists3
$ javac ClassDemo.java
ClassDemo.java:5: error: array required,
 but Planet found.

 double mass = earth[fieldOfInterest];

 ^

Arrays vs. Classes

Class member variable names CANNOT be computed and used at runtime.

String fieldOfInterest = "mass";
Planet earth = new Planet(6e24, "earth");
double mass = earth[fieldOfInterest];
System.out.println(mass);

… if you reallllly want to do this, you can: https://goo.gl/JxpyLq

https://goo.gl/JxpyLq

jug ~/Dropbox/61b/lec/lists3
$ javac ClassDemo.java
ClassDemo.java:5: error: cannot find Symbol
 double mass = earth.fieldOfInterest;

 ^
 symbol: variable fieldOfInterest
 location: variable earth of type Planet

Arrays vs. Classes

Class member variable names CANNOT be computed and used at runtime.
● Dot notation doesn’t work either.

… if you reallllly want to do this, you can: https://goo.gl/JxpyLq

String fieldOfInterest = "mass";
Planet earth = new Planet(6e24, "earth");
double mass = earth.fieldOfInterest;
System.out.println(mass);

https://goo.gl/JxpyLq

Another view

The only (easy) way to access a member of a class is with hard-coded dot
notation.

The Java compiler does not treat text on either side of a dot as an expression, and
thus it is not evaluated.
● See a compilers or programming languages class for more!

int k = x[indexOfInterest]; /* no problem */

double m = p.fieldOfInterest; /* won't work */
double z = p[fieldOfInterest]; /* won't work */
/* No (sane) way to use field of interest */

double w = p.mass; /* works fine */

